G protein signaling in a neuronal network is necessary for rhythmic motor pattern production.

نویسندگان

  • Stefan Clemens
  • Paul S Katz
چکیده

G protein-coupled receptors are widely recognized as playing important roles in mediating the actions of extrinsic neuromodulatory inputs to motor networks. However, the potential for their direct involvement in rhythmic motor pattern generation has received considerably less attention. Results from this study indicate that G protein signaling appears to be integral to the operation of the central pattern generator (CPG) underlying the escape swim of the mollusk Tritonia diomedea. Blocking G protein signaling in a single CPG neuron, cerebral neuron C2, with intracellular iontophoresis of the guanine nucleotide analogue guanosine 5'-O-(2-thiodiphosphate) (GDP-beta-S), prevented the production of the swim motor program. Moreover, tonic activation of G protein signaling in this neuron by iontophoresis of the GTP analogues guanosine 5'-O-(3-thiotriphosphate) (GTP-gamma-S) and 5'-guanylyl-imidodiphosphate also inhibited motor pattern production. The possible sites of action of these guanine nucleotide analogues were examined to assess potential mechanisms by which they interfered with motor pattern production. Intracellular iontophoresis of GDP-beta-S into C2 did not affect C2 basal synaptic strength. However, it did reduce heterosynaptic facilitation of C2 synapses caused by the dorsal swim interneurons (DSIs), a set of serotonergic swim CPG neurons. In contrast, GTP-gamma-S directly enhanced C2 synaptic strength onto DFN, mimicking the neuromodulatory effect of the DSIs. GDP-beta-S, but not the GTP analogues, decreased C2 excitability, whereas both GTP analogues, but not GDP-beta-S, blocked the ability of DSI stimulation to increase C2 excitability. The decrease in C2 excitability caused by GDP-beta-S is not likely to be responsible for the inhibition of the swim motor pattern because decreasing C2 firing rate, by injecting hyperpolarizing current, did not prevent the production of the rhythmic motor pattern. Taken together, these data suggest that G protein signaling is a necessary and integral component of the escape swim CPG in Tritonia and that G protein signaling mediates DSI heterosynaptic facilitation of C2 but may not mediate the DSI-evoked enhancement of C2 excitability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NO/cGMP Signaling and the Flexible Organization of Motor Behavior in Crustaceans1

SYNOPSIS. The basic elements of the NO/cGMP signaling pathway have been identified in the nervous systems of animals from nearly all of the major phyla. In crustaceans, the NO/cGMP pathway is associated with certain fundamental neuronal processes, including sensory integration and the organization and production of motor behavior. Here I review the evidence for NO synthesis and action in crusta...

متن کامل

Bursting in Neurons and Small Networks

Bursting refers to patterns of consisting of episodes of relatively separated by intervals of neural activity fast spiking . Bursting neurons are ubiquitous in the nervous system and play important roles in the production of motor, quiescence sensory, and cognitive behaviors. Because bursting is the predominant mode of activity in central pattern generator (CPG networks that underlie rhythmic m...

متن کامل

Central Pattern Generator in Bio-inspired Robot: Simulation using MATLAB

Central pattern generator (CPG) is defined here as a neural network responsible for the production of the timing cues of a rhythmic motor output pattern. In biological system, the CPG is a network of neurons that generate the rhythmic movements such as locomotion of animals. This rhythmic movement will induced a coordination of physical parts that necessary for stable locomotion. To implement t...

متن کامل

Changes in regulator of G protein signaling-4 gene expression in the spinal cord of adrenalectomized rats in response to intrathecal morphine

Introduction: Regulators of G-protein signaling protein negatively control G protein -coupled receptor signaling duration by accelerating Gα subunit guanosine triphosphate hydrolysis. Since regulator of G-protein signaling4 has an important role in modulating morphine effects at the cellular level and the exact mechanism(s) of adrenalectomy-induced morphine sensitization have not been fully cl...

متن کامل

Heat shock protein 70 protects motor neuronal cells expressing mutant Cu/Zn superoxide dismutase (SOD1) against altered calcium homeostasis

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by the progressive loss of motor neurons leading to paralysis and death. Mutations of the human Cu/Zn superoxide dismutase (SOD1) are found in some cases of familial ALS (fALS). Recent evidences suggest the accumulation of intracellular calcium is one of the primary mechanisms of motor neuronal degeneration. In th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 89 2  شماره 

صفحات  -

تاریخ انتشار 2003